

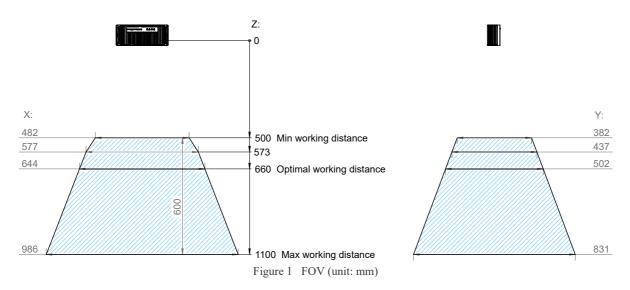
VMD02-5011 Specifications

Version: Draft

Date: 2025.03.06

Copyright ©2025 Percipio Technology Limited, All Rights Reserved.

Technical Specifications

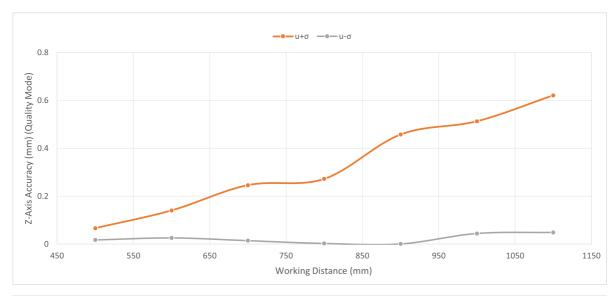

Parameters	Value
3D Sensing Technology	Active stereo + structured light with fringe patterns
Laser wavelength	635 nm
	Quality mode: approx. 2677 ms
Latency of image acquisition 1	Standard mode: approx. 2322 ms
	Fast mode: approx. 1624 ms
	Quality mode :
	0.63 fps @ 2048 x 1536
	0.63 fps @ 1024 x 768
	0.63 fps @ 512 x 384
	Standard mode:
Frame rate ² @ resolution	0.76 fps @ 2048 x 1536
(Depth)	0.76 fps @ 1024 x 768
	0.76 fps @ 512 x 384
	Fast mode:
	1.40 fps @ 2048 x 1536
	1.40 fps @ 1024 x 768
	1.40 fps @ 512 x 384
Output data	Depth, grayscale, point cloud images

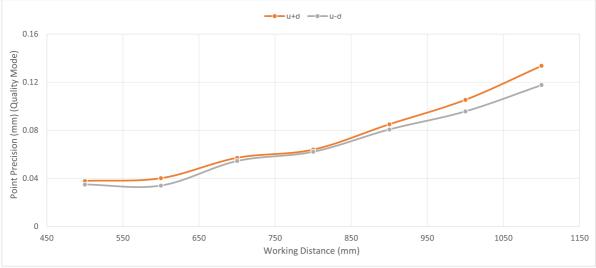
- [1] Latency of image acquisition: the latency time between the host computer sending the software trigger signal and receiving depth images (with a resolution of 2048 x 1536) from the camera when the camera is working in software trigger mode with default SGBM parameters. This latency is measured under three different PreSetMode settings: Quality, Standard, and Fast. This latency will change with SGBM parameters and the exposure time.
- [2] Frame rate of depth images: the number of depth images that the host computer receives every second from the camera when the camera is working in free acquisition mode with default SGBM parameters. This frame rate is measured under three different PreSetMode settings: Quality, Standard, and Fast. This frame rate of depth images will change with SGBM parameters and the exposure time.

Measurement Performance

Measurement Range & FOV

Parameters	Value
Working distance	$500 \text{ mm} \sim 1100 \text{ mm}$ (change with SGBM parameters)
Near field of view	482 mm x 382 mm @ 500 mm (H/V $\approx 51^{\circ}/42^{\circ}$)
Field of view @ optimal working distance	644 mm x 502 mm @ 660 mm (H/V \approx 52°/42°)
Far field of view	986 mm x 831 mm @ 1100 (H/V \approx 48°/41°)
XY point-to-point distance ¹ @ optimal working distance	0.33 mm @ 660 mm

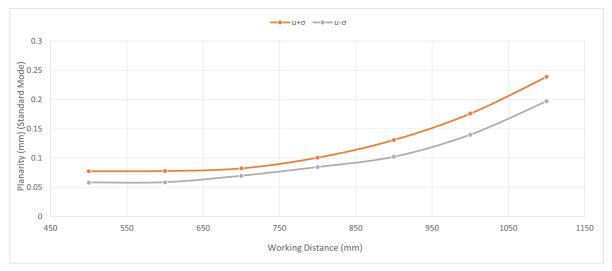

[1] XY point-to-point distance: the actual physical distance corresponding to the spacing between pixels in the depth image (unit: mm).

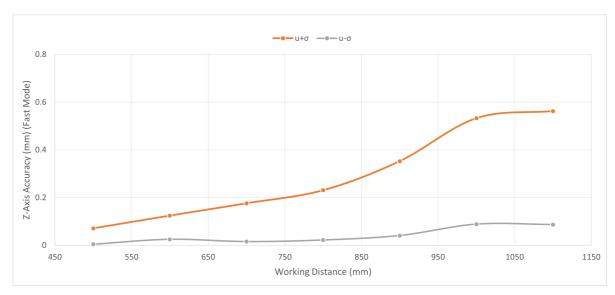

Performance Evaluation Metrics

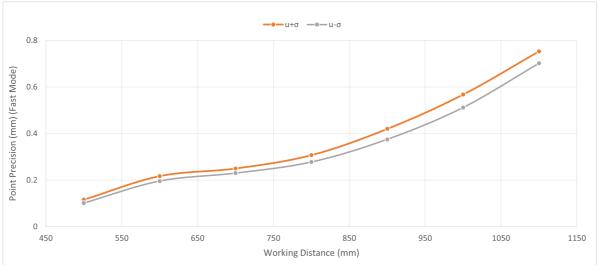
Parameters	Descriptions
Z-axis accuracy	The average deviation between measured distance values and true distance values in the Z-direction.
Point precision The degree of oscillation of depth values for all pixel points in the central regio the field of view over time.	
Planarity	The dispersion of all pixel points in the central ROI relative to the desired plane.

The line charts below illustrates the measured distribution ranges of Z-Axis Accuracy, Point Precision, and Planarity under three different PreSetMode settings: Quality, Standard, and Fast. The horizontal axis represents the distance values, with the unit in millimeters (mm).


Quality Mode




Standard Mode



Fast Mode

Software Specifications

Parameters	Value
Host computer OS	Linux/Windows/ROS
SDK	Percipio Camport SDK; Supported programming language: C, C++, C#, Python
	See <u>Percipio Technical documentation</u> for more SDK tutorials.
	The SGBM parameters will influence the measurement
SGBM	performance of the camera.
parameters	For the settings of SGBM parameters, see <u>API Guide - SGBM</u> <u>feature</u> .

Hardware Specifications

Parameters	Value
Dimension (including interfaces)	268 mm x 105 mm x 65 mm
Weight	2152 g
Power & trigger connector	M12 A-Code, 8-pin, male connector See Power & Trigger Connector for its pinout.
Data connector	M12 X-Code, 8-pin, female connector Gigabit Ethernet
Power supply	DC 24 V ~ 48 V
Hardware trigger	Supports 2 channels of hardware trigger input/output: Input/output 1: rising-edge trigger Input/output 2: falling-edge trigger
Power consumption	≤ 24 W
Housing material	Aluminum alloy
Ingress protection	IP65
Thermal dissipation	Passive ¹
Temperature	Recommended operating temperature: 22 °C \sim 25 °C Operating temperature: 0 °C \sim 40 °C Storage: -10 °C \sim 55 °C
Laser Safety	Class 3R (IEC 60825-1:2014)

[1] The camera housing has a heat dissipation function. To ensure the normal operation of the device, please do not cover the housing to avoid overheating. Additionally, for optimal performance, it is recommended to ensure good ventilation and air convection in the surrounding environment during installation. Choose a metal mounting surface with good thermal conductivity to contact with the camera, and try to place the device in an environment with minimal temperature fluctuations.

Power & Trigger Connector

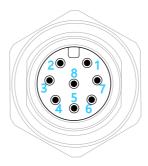


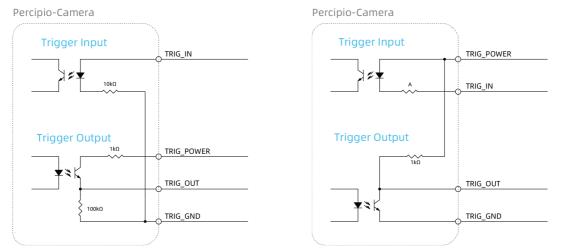
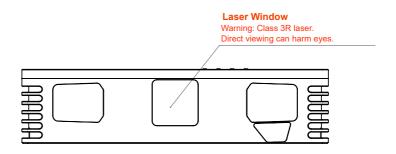
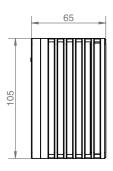
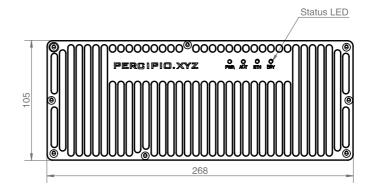
Figure 2 Pinout of the power & trigger connector

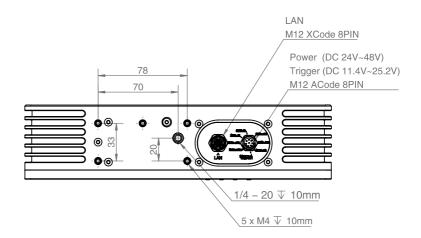
Pin No.	Name	Description
1	TRIG_OUT 1	Trigger output signal 1 [rising-edge]
2	CAM_POWER	DC 24 $V \sim 48 V$ power (camera)
3	CAM_GND	GND (camera)
4	TRIG_POWER	DC 11.4V~25.2V power (trigger circuit)
5	TRIG_GND	GND (trigger circuit)
6	TRIG_IN 2	Trigger input signal 2 [falling-edge]
7	TRIG_IN 1	Trigger input signal 1 [rising-edge]
8	TRIG_OUT 2	Trigger output signal 2 [falling-edge]

Trigger Circuit Schematic Diagram

The camera supports two channels of hardware trigger input/output, specially rising-edge and falling-edge triggers. The trigger circuit schematic diagrams are shown as follows (The resistance at point A is $10k\Omega$).

For details about hardware connection, see Percipio Technical documentation.


Figure 3 Left: Trigger circuit schematic diagram (rising edge); Right: Trigger circuit schematic diagram (falling-edge)

Mechanical Dimensions

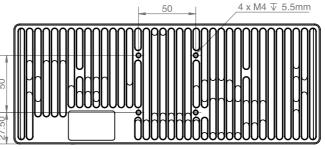


Figure 4 VMD02-5011 mechanical dimensions (unit: mm)

Percipio.XYZ is an industry leading provider of 3D cameras. We provide a broad range of 3D camera products to meet requirements from various applications, such as industrial, automotive, inspection, logistics, medical, education, security and commercial etc. We will continue to develop and optimize our product roadmap to support more 3D vision applications.

Percipio is an independent vendor of 3D machine vision solutions. We provide products and services to system integration customers rather than end users. This marketing strategy allows us to serve multiple sectors and segments, and also means that our success will be based on our customer's success. Together with our customer's industry specific expertise, we can support end users with implementing machine intelligence, which will improve productivity and/or reduce cost.

Affordable 3D Machine Vision

Contact Us

Purchase : info@pcp3d.com
Technical : support@pcp3d.com
Website : www.pcp3d.com

Documentation: doc.percipio.xyz/cam/latest/en/

Statement

* Data mentioned in this document is subject to change without notice.

* The data mentioned in this document may vary due to environmental factors and other reasons. Percipio does not assume any consequences arising therefrom.

YouTube